Package: RGBM 1.0-11
RGBM: LS-TreeBoost and LAD-TreeBoost for Gene Regulatory Network Reconstruction
Provides an implementation of Regularized LS-TreeBoost & LAD-TreeBoost algorithm for Regulatory Network inference from any type of expression data (Microarray/RNA-seq etc).
Authors:
RGBM_1.0-11.tar.gz
RGBM_1.0-11.zip(r-4.5)RGBM_1.0-11.zip(r-4.4)RGBM_1.0-11.zip(r-4.3)
RGBM_1.0-11.tgz(r-4.4-x86_64)RGBM_1.0-11.tgz(r-4.4-arm64)RGBM_1.0-11.tgz(r-4.3-x86_64)RGBM_1.0-11.tgz(r-4.3-arm64)
RGBM_1.0-11.tar.gz(r-4.5-noble)RGBM_1.0-11.tar.gz(r-4.4-noble)
RGBM_1.0-11.tgz(r-4.4-emscripten)RGBM_1.0-11.tgz(r-4.3-emscripten)
RGBM.pdf |RGBM.html✨
RGBM/json (API)
# Install 'RGBM' in R: |
install.packages('RGBM', repos = c('https://raghvendra5688.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:80c5df56a5. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win-x86_64 | OK | Nov 04 2024 |
R-4.5-linux-x86_64 | OK | Nov 04 2024 |
R-4.4-win-x86_64 | OK | Nov 04 2024 |
R-4.4-mac-x86_64 | OK | Nov 04 2024 |
R-4.4-mac-aarch64 | OK | Nov 04 2024 |
R-4.3-win-x86_64 | OK | Nov 04 2024 |
R-4.3-mac-x86_64 | OK | Nov 04 2024 |
R-4.3-mac-aarch64 | OK | Nov 04 2024 |
Exports:add_namesapply_row_deviationconsider_previous_informationfirst_GBM_stepGBMGBM.testGBM.trainget_colidsget_filepathsget_ko_experimentsget_tf_indicesnormalize_matrix_colwisenull_model_refinement_stepregularized_GBM_stepregulate_regulon_sizeRGBMRGBM.testRGBM.trainsecond_GBM_stepselect_ideal_ktest_regression_stump_Rtrain_regression_stump_Rtransform_importance_to_weightsv2lz_score_effect